首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6466篇
  免费   1313篇
  国内免费   993篇
化学   4588篇
晶体学   226篇
力学   389篇
综合类   116篇
数学   742篇
物理学   2711篇
  2024年   3篇
  2023年   110篇
  2022年   175篇
  2021年   254篇
  2020年   320篇
  2019年   350篇
  2018年   283篇
  2017年   327篇
  2016年   392篇
  2015年   420篇
  2014年   473篇
  2013年   631篇
  2012年   705篇
  2011年   657篇
  2010年   513篇
  2009年   508篇
  2008年   492篇
  2007年   412篇
  2006年   340篇
  2005年   305篇
  2004年   244篇
  2003年   166篇
  2002年   139篇
  2001年   111篇
  2000年   76篇
  1999年   76篇
  1998年   33篇
  1997年   43篇
  1996年   47篇
  1995年   45篇
  1994年   22篇
  1993年   23篇
  1992年   12篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1980年   4篇
  1936年   2篇
排序方式: 共有8772条查询结果,搜索用时 15 毫秒
71.
Generating FeIV=O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV=O generation pathway and oxidation behavior remain obscure. Employing an Fe−N−C catalyst with a typical Fe−N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV=O is mediated by an Fe−N−C−PMS* complex—a well-recognized nonradical species for induction of electron-transfer oxidation—and we determined that adjacent Fe sites with a specific Fe1−Fe1 distance are required. After the Fe atoms with an Fe1-Fe1 distance <4 Å are PMS-saturated, Fe−N−C−PMS* formed on Fe sites with an Fe1-Fe1 distance of 4–5 Å can coordinate with the adjacent FeII−N4, forming an inter-complex with enhanced charge transfer to produce FeIV=O. FeIV=O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.  相似文献   
72.
Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust “quasi-solid–gas” state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 μg h−1 mg−1cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 yield rate up to 15.7 μg h−1 mg−1cat. and FE up to 3.4 % in nitrogen oxidation reaction).  相似文献   
73.
The short-chain dehydrogenase/reductase (SDR) superfamily members acyl-ACP reductases FabG and FabI are indispensable core enzymatic modules and catalytic orientation controllers in type-II fatty acid biosynthesis. Herein, we report their distinct substrate allosteric recognition and enantioselective reduction mechanisms. FabG achieves allosteric regulation of ACP and NADPH through ACP binding across two adjacent FabG monomers, while FabI follows an irreversible compulsory order of substrate binding in that NADH binding must precede that of ACP on a discrete FabI monomer. Moreover, FabG and FabI utilize a backdoor residue Phe187 or a “rheostat” α8 helix for acyl chain length selection, and their corresponding triad residues Ser142 or Tyr145 recognize the keto- or enoyl-acyl substrates, respectively, facilitating initiation of nucleophilic attack by NAD(P)H. The other two triad residues (Tyr and Lys) mediate subsequent proton transfer and (R)-3-hydroxyacyl- or saturated acyl-ACP production.  相似文献   
74.
Nanoplastics are recently recognized as neurotoxic factors for the nervous systems. However, whether and how they affect vesicle chemistry (i.e., vesicular catecholamine content and exocytosis) remains unclear. This study offers the first direct evidence for the nanoplastics-induced neurotoxicity by single-vesicle electrochemistry. We observe the cellular uptake of polystyrene (PS) nanoplastics into model neuronal cells and mouse primary neurons, leading to cell viability loss depending on nanoplastics exposure time and concentration. By using single-vesicle electrochemistry, we find the reductions in the vesicular catecholamine content, the frequency of stimulated exocytotic spikes, the neurotransmitter release amount of single exocytotic event, and the membrane-vesicle fusion pore opening-closing speed. Mechanistic investigations suggest that PS nanoplastics can cause disruption of filamentous actin (F-actin) assemblies at cytomembrane zones and change the kinetic patterns of vesicle exocytosis. Our finding shapes the first quantitative picture of neurotoxicity induced by high-concentration nanoplastics exposure at a single-cell level.  相似文献   
75.
Sheet-like ZSM-5 has been regarded as a promising material for catalytic applications due to its diffusion superiority. However, it still remains a challenge to obtain a desirable sheet-like morphology because of the complex synthesis process of zeolites. Here, a facile strategy for synthesizing sheet-like ZSM-5 is developed by only adding ethanol as zeolite growth modifier in the synthesis gel. It is thought that ethanol might be preferentially absorbed on the {010} surface of zeolite crystals, interact with the exposed silicon hydroxyl groups on the crystal {010} facet, and suppress the growth of b axis, resulting in the sheet-like shape. Through finely tunning synthesis parameters, sheet-like ZSM-5 crystals with thin b-axis thickness of 90 nm and different aspect ratios could be obtained. Owing to its shorter diffusion path and optimized acidity, sheet-like ZSM-5 exhibits better catalytic performance than conventional ZSM-5 in the alkylation of benzene with ethanol.  相似文献   
76.
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2BX6, A2B(I)B(III)X6, and A3B2X9-type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.  相似文献   
77.
Recently, we confirmed that the 95% ethanol-extracted fraction of Codonopsis Radix, which contains several triterpenoids and sterols, possesses pharmacological activities. However, due to the low content and diverse types of triterpenoids and sterols, their similar structures, lack of ultraviolet absorption, and difficulty in obtaining controls, few studies have so far assessed their contents in Codonopsis Radix. We accordingly constructed an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry technique for the simultaneous quantitative determination of 14 terpenoids and sterols. Separation was performed on the Waters Acquity UPLC HSS T3 C18 column (100 × 2.1 mm, 1.8 μm) with 0.1% formic acid (A) and 0.1% formic acid in methanol (B) as mobile phase under gradient elution. The determination coefficients for each of the matrix calibration curves were ≥0.9925. The average recovery ranged from 81.25% to 118.05%, with relative standard deviations of <4%. The contents of 14 components in 23 batches were quantified and further analyzed through chemometrics. Linear discriminant analysis can distinguish sample varieties. The quantitative analysis method can accurately determine the contents of 14 components and thereby provide the chemical basis for the quality control of Codonopsis Radix. It also could be a valuable approach for the classification of different Codonopsis Radix varieties.  相似文献   
78.
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII(bpbp)(μ-OAc)2FeIII]2+, CuFe−OAc ), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s−1 and selectivity of 96.0 % in the presence of Et3NH+. This performance significantly outcompetes its homobimetallic analogues (2.7 s−1 of CuCu−OAc with %H2O2 selectivity of 98.9 %, and inactive of FeFe−OAc ) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O−O bond cleavage via a CuII(μ-η1 : η2-O2)FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.  相似文献   
79.
In this work, various Co3O4-ZSM-5 catalysts were prepared by the microwave hydrothermal method (MH-Co3O4@ZSM-5), dynamic hydrothermal method (DH-Co3O4@ZSM-5), and conventional hydrothermal method (CH-Co3O4/ZSM-5). Their catalytic oxidation of dichloromethane (DCM) was analyzed. Detailed characterizations such as X-ray diffractometer (XRD), scanning microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of O2 (O2-TPD), temperature-programmed desorption of NH3 (NH3-TPD), diffuse reflectance infrared Fourier-transform spectra with NH3 molecules (NH3-DRIFT), and temperature-programmed surface reaction (TPSR) were performed. Results showed that with the assistance of microwave, MH-Co3O4@ZSM-5 formed a uniform core-shell structure, while the other two samples did not. MH-Co3O4@ZSM-5 possessed rich surface adsorbed oxygen species, higher ratio of Co3+/Co2+, strong acidity, high reducibility, and oxygen mobility among the three Co3O4-ZSM-5 catalysts, which was beneficial for the improvement of DCM oxidation. In the oxidation of dichloromethane, MH-Co3O4@ZSM-5 presented the best activity and mineralization, which was consistent with the characterizations results. Meanwhile, according to the TPSR test, HCl or Cl2 removal from the catalyst surface was also promoted in MH-Co3O4@ZSM-5 by their abundant Brønsted acid sites and the promotion of Deacon reaction by Co3O4 or the synergistic effect of Co3O4 and ZSM-5. According to the results of in situ DRIFT studies, a possible reaction pathway of DCM oxidation was proposed over the MH-Co3O4@ZSM-5 catalysts.  相似文献   
80.
Tumor penetration is important fo r effectively tumor targeting drug delivery.Recently,many researches are published to overcome the barriers that restrict tumor penetration and improve drug delivery efficiency.In the mini review,we first analyzed the barriers influence the tumor penetration,including tumor microenvironment barriers,nanoparticle properties,and interaction barriers between tumor and nanoparticles.To overcome the barrier,several strategies are developed,including modulating tumor microenvironment,changing particle size,transcytosis enabled tumor penetration,cell penetrating peptide modification and overcoming binding site barrier,which could effectively improve tumor penetration,and finally enhance tumor treatment outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号